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Quantum Langevin Equation 

H a n s  M a a s s e n  I 

Received May 12, 1983; revised August 22, 1983 

A quantum-mechanical  treatment of the evolution of an anharmonic  oscillator 
coupled to a heat  bath is given. It is shown that for a certain class of 
anharmonic  potentials the heat bath drives the oscillator to an equilibrium state, 
close to the quan tum Gibbs state associated to the potential. Thus  a partial 
proof is provided for a conjecture of R. Benguria and M. Kac. 
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1. INTRODUCTION 

In 1908, Langevin proposed his equation for the description of Brownian 
motion. For the case of a particle on a line in an external potential v this 
equation is the following: 

d 2 d 
dt 2 X t + ~ ~ X t + v ' ( X t  ) = (2~/)l/2E? (1.1) 

Here, ~/ is a friction coefficient, and E ~ denotes what is now known as 
"white noise" of temperature 1//3, the Gaussian generalized stochastic 
process with covariance given by 

(E/e?) = B- 1*( t - s) 
In 1930 Uhlenbeck and Ornstein constructed the solution of the 

Langevin equation (1.1). Viewed as a stochastic process with values in the 
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phase space of the particle, this solution is a Markov process. As a result of 
this property, time evolution acts as a semigroup of transformations on the 
space of all probability densities on the phase space. This semigroup is 
generated by a diffusion equation, the Fokker-Planck equation. If we 
suppose that the potential v is of a cuplike form, there is precisely one 
probability density left fixed under the time evolution, and all other 
densities flow towards it as time goes on. This one stationary probability 
density turns out to be the Gibbs probability distribution associated with 
the potential v. (Cf., for instance, Ref. 3.) In this sense the solution (1.1) 
returns to thermal equilibrium. 

The probabilistic theory of Brownian motion being established, from 
the physical point of view two fundamental questions remained to be 
answered. On the one hand it was not clear whether (1.1) could be derived 
from microscopic considerations based on classical mechanics alone, and 
on the other hand some authors wondered what might be a suitable 
corresponding theory in quantum mechanics. Answers to both questions 
were provided by G. Ford, M. Kac, and P. Mazur, using a harmonic 
oscillator model. In 1965 (2) they showed that, in a chain of coupled 
harmonic oscillators, one of the oscillators can be made to satisfy (1.1) 
[with v ( x ) - - � 8 9  2] to arbitrary accuracy by an appropriate choice of the 
coupling strengths. A quantum theory of friction and noise was now 
obtained by quantization of the oscillators in the chain. The quantum 
Langevin equation satisfied by an element of this chain, is formally 
identical with (1.1), but now X t is a self-adjoint operator on the Hilbert 
space of the chain of oscillators, and E/~ is an operator-valued distribution, 
satisfying the commutation relation 

[ E? ,E?I  = i S ' ( t -  s)~ (1.2) 

It is a consequence of this relation, and of the assumption of thermal 
equilibrium for the entire chain at inverse temperature/3, that the covari- 
ance of E r is now given by 

; :~  k e-ik(,-s) dk 
( E g E f )  = ~ 1 - e-pk 2~r (1.3) 

For the special case v(x) = �89 x 2, treated in Ref. 2, the quantum Langevin 
equation is linear and readily solved. Its stationary solution is the family 
( QP'~}t~a given by the formal expression 

Ot p'• = f j  q,(s - t)Eyd, (1.4) 

where q, : R---~ is zero on (0, ~) ,  and on ( -  ~ ,0 ]  it is the solution of the 
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differential equation q ' - 7 q ' +  q = 0 with boundary conditions q(0)= 0 
and q'(0)= -(27)  1/2. This solution (Qp'n} has the property of return to 
thermal equilibrium in the following sense. Suppose one perturbs the state 
of the entire system at time zero by changing the probability distribution of 
the oscillator and, locally in time, that of the incoming noise, thus bringing 
the system in the vector state ~p, say. We then have, irrespective of 4, 

lira ~,exp( i~Qp 'n )~) 

- ~  1 - e-Pk 1)a 2~r 

and in the "low-friction limit" %0 this tends to 

e x p [ -  �88189 fl) l  

the expectation value of exp(iX.) in the Gibbs state of a quantum- 
mechanical harmonic oscillator at inverse temperature ft. All the above 
results can be found in Ref. 2. 

It is important to know whether this property of return to equilibrium 
is just a lucky consequence of the linearity of the equation, or whether it 
persists under perturbations. This question must necessarily be approached 
along different lines as were sketched above for the classical case, because 
the quantum stochastic process at hand is not a Markov process. In fact, 
quantum Markov processes cannot occur in thermal equilibrium. (4) (Mar- 
kovian limits like the weak-coupling limit in rescaled time destroy the 
thermal equilibrium state.) 

A few years ago, R. Benguria and M. Kac conjectured that for a class 
of potentials v the distribution of the stationary solution {X t} of the 
quantum Langevin equation approaches in the low friction limit 750 the 
quantum-mechanical Gibbs distribution of the oscillator subject to the 
potential v. They provided evidence to support this conjecture by a pertur- 
bation calculation carried through to third order. (1) 

In this paper we formulate this and related questions in the setting of 
W*-dynamical systems, and show that it is possible to give a precise answer 
to some of them. 

We shall be concerned with the following questions: If in (1.1) we put 

v(x) = �89 2 + w(x) (1.5) 

does it have a stationary solution (Xt}tc~? If so, does the following limit 
exist for all 4: 

lim (~b, exp(iXX t )4) = :/2/~,~,w (X) (1.6) 
t - - )  oo 
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And do we have 

lira/~,~,w (X) =/2~,0, w (X) (1.7) 
n$0 

where t%0,w is the quantum-mechanical Gibbs measure, given in terms of 
the Hamiltonian h = - � 8 9  �89 2 of the harmonic oscillator as fol- 
lows: 

tr{exp[ - /~ (h  + w)]exp(i2t �9 )} 

/2/~'~ (X) = t r { e x p [ - f l ( h  + w)]} (1.8) 

Our, partial, answers are based on the perturbation theory of W*- 
dynamical systems. The Dyson series occurring in this perturbation theory 
turns out to be L~-convergent for a limited class of perturbations w 
described by a certain inequality. If w is in this class, the quantum 
Langevin equation with v given by (1.5) indeed has a solution {Xt}, whose 
distribution returns to some equilibrium measure/~r in the sense of (1.6). 
However, the above-mentioned class of perturbations shrinks to the class of 
constant functions as ~ decreases to zero, and we have a proof of (1.7) only 
in the trivial case that w is a constant, corresponding to the linear quantum 
Langevin equation. For more general w's we must content ourselves with 
an estimate of the difference between/~,~,~ and/xr w, which shows that at 
least these two measures can be brought arbitrarily close together by 
choosing B small, albeit for a narrowing class of w's. 

In fact, the L~-convergence of the Dyson series is more than one can 
hope for in a general W*-dynamical system, whereas we feel that the 
stability of the property of return to equilibrium should be much more 
common. We expect, therefore, that our result is far from optimal. 

This paper is organized as follows. In Section 2 a construction is given 
of the quantum noise, and the linear quantum Langevin equation is seen to 
have a stationary solution which can be viewed as a single operator, swept 
along by the flow of a strongly mixing W*-dynamical system. In Section 3 
methods are described for perturbing W*-dynamical systems. It is shown in 
Section 4 that the L~-convergence of the Dyson series implies that the 
unperturbed equilibrium state returns to the perturbed one under the 
perturbed flow. Computationally, this result comes closest to that of Ref. 1. 
In Section 5, another consequence of the L~-convergence of the Dyson 
series is pointed out: the perturbed system is actually isomorphic to the 
unperturbed one, thus inheriting the strong mixing property. In Section 6 it 
is checked that indeed the Dyson series associated with our perturbation is 
L~-convergent, provided that the anharmonic term in the potential satisfies 
a certain inequality. It is shown in Section 7 that this way of perturbing the 
dynamics indeed leads to a solution of the anharmonic Langevin equation. 
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Finally the behavior of the perturbed equilibrium state for small values of 
the coupling constant ~ is considered in Section 8. 

Let us remark here that the present program does not apply without 
change to quantum noise of zero temperature. The associated dynamical 
system is not strongly mixing, and there does not necessarily exist a normal 
state, invariant for the perturbed dynamics (cf. Ref. 5). 

2. CONSTRUCTION OF THE DYNAMICAL SYSTEM 

Since all E B satisfying (1.2) and (1.3) are unitarily equivalent, we shall 
not bother about the details of the model that produced these relations, but 
instead construct a simple version of E ~. 

Let J be Schwartz's class of rapidly decreasing, infinitely differentia- 
ble functions R ~ R, and let o be the symplectic form on J ,  given by 

o(f, g) = f ~  fg'dt 

On the CCR algebra 7Y over the symplectic space { J , o } ,  the state ~ ,  
given by 

~o~(W(f)) = e x p ( -  �89 I]fl[~) 

with 

k * 2dk = If (k)l Tv (2.1) 
I l f l l ~  ~ 1 - -  e - /~k  

satisfies the KMS condition with respect to the *-automorphism group a of 
~Y//, corresponding to the translations on • :  

at(W(f) )  = W(T,f), (Ttf)(s) = f(s  - t) 

We thus use the idea of a translation representation, introduced into this 
context by Lewis and Thomas. (6) Cf. also Ref. 7. 

Now, let (oZP~ ,~rr162 be the GNS-triple associated with ~ /  and ~0~, 
and let ~/r  be the closure of ~rr in the strong operator topology. Let 
us identify ~ with ~rB(~#/) C ~//~, and extend ~ and a to all of ~'B in 
the natural way. Then {1/~,~or is a strongly mixing W*-dynamical 
system in thermal equilibrium at inverse temperature/3 in the sense of the 
following definition: 

Definition, By a W*-dynamieal system we mean a triple {t , ' ,  ~, c~}, 
where dr'  is a v o n  Neumann algebra, ~0 a normal state on ~ / ,  and 

= (c~,}tes a weak *-continuous group of u-preserving *-automorphisms 
of ~ / .  If ~0 is faithful and (c~_/~t)tE R is its modular group, we say that 
{~/,~o,c~} is in thermal equilibrium (at inverse temperature fl). If for all 
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normal states 0 on .~" and all M ~ ~t' 

lim ,~(at(M)) = ~ ( M )  (2.2) 
t--+ • ~ 

we call (~{t', ~o, a } strongly mixing. 

Next, define the self-adjoint operators Er ( f  E J )  on ~ by 

exp[ iXE~(f)] = W(Xf) (X E N) 

The map E r from J to the operators on S ~  can be continuously 
extended to the closure 2 r  of J in the norm II " [1~, given in (2.1). The 
function q~ introduced in (1.4) is in J ~ ,  and therefore we may define the 
family ( QiB'~}tca by 

Q?," = Er Ttq,) 

It is not hard to show that, for all ~ in the linear span of { W(g)(~l 
g E ,7  r } and all f ~ J we have 

;~_~(f" - ~ f '  + f ) ( t ) Q f " p d t  = (2~)'/2E~(f)+ (2.3) 

This is a distribution form of the Langevin equation (1.1) with potential 
v ( x )  = �89 x 2. 

We note in passing that p~ := d/dt(T,q~)l,= o is not in Y/~ for any 
fl > 0, so that a momentum operator Pfl'" cannot be defined by putting 

P~'" := EB(T,1),) (2,4) 

This indicates that the quantum-mechanical Uhlenbeck-Ornstein process, 
unlike its classical counterpart, moves about too wildly, due to vacuum 
fluctuations in the noise, to possess a momentum observable. 

Now consider the Langevin equation with potential v(x) = �89 x 2 + w(x) 
with w real and bounded. The key idea in solving this equation is to add a 
perturbation operator V = w( Q0 ~'~) to the Hamiltonian of the dynamical 
system. It turns out that, in the dynamics thus obtained, Q0 ~'~ satisfies the 
quantum Langevin equation with potential v and a transformed noise. The 
problem is to prove that the perturbed dynamical system is also mixing. In 
the next three sections, perturbations of W*-dynamical systems will be 
considered in general. 

3. PERTURBATIONS OF W*-DYNAMICAL SYSTEMS 

Let {~',~0,a} be a W*-dynamical system in thermal equilibrium. 
Given V-- V*~  d / ,  there are two equivalent, but apparently different 
ways of perturbing it to obtain another W*-dynamical system in thermal 
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equilibrium, { ~ / ,  o~ v, a v} say. One is called the time-dependent perturba- 
tion theory and perturbs a. It was first formulated, for general C*-algebras, 
by Robinson. (8) The other is called the time-independent perturbation 
theory and perturbs o~. It was developed by Araki. (9) If ~ / i s  a factor, the 
time evolutions and their equilibrium states are in one-to-one correspon- 
dence, and therefore the two approaches must be equivalent. 

The time-dependent perturbation theory defines a v by the Dyson 
series 

a _ t  o a t V ( M )  

OD 
= ~ i " (  dt l 

n = 0  , . /0>~t l />  ' ' -  / > / ' n > ~ - - t  
�9 . .  d , o [ ~ , . ( v ) , F . . .  [ ~ , , ( v ) , M ]  . . .  ] ]  

(3.1) 

The groups a and a v satisfy the integral equations 

M + if0'  ,([ 
and 

(3.2) 

aVt o o~t(M)= M - i f o t ~ V s (  [ g, oLs(M)])ds (3.3) 

(In fact, (3.1) was obtained by iteration of (3.2).) 
The time-independent perturbation theory constructs an a V-KMS- 

state ~0 v in the following way: For each M = (M0, M l . . . . .  Mn} E ~ , , + 1  
there is a unique bounded and continuous function GM on the region 

A ~ : = { ( z l , . . . , z , }  ~ C n [ O < I m z , <  . . .  < I m z  n <  fi} (3.4) 

which is analytic on the interior of Aft and such that for all t l , . . . ,  tn E R, 

GM( t I . . . . .  t~) = o~( Moat , (  M , )  . . . ato( M .  )) 

The state ~ v is then given by 

v ( M )  = 0 V ( M ) / o  v(~)  

where 
o0 

p~(M)= 2(-1)~( d ~ , - . . d ~ o a ~ , ~  . . . . .  ~(i~, . . . . .  i ~ )  
n=O dO<<.sl< "'" <sn< fl 

(3.5) 
We shall not need this expression for ~ v, however, until in Section 8 

we consider the limit 750. The existence of ~0 v suffices for the results in the 
next two sections. 
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4. RETURN TO THE PERTURBED EQUILIBRIUM STATE 

The Dyson series on the right-hand side of (3.1) always converges in 
norm for all finite values of t, but rarely does it converge for t = oo. In the 
special case described in Section 2, this happens to be the case, however. 

If V and A are operators in ~ / ,  and t l , . . . ,  t n are real numbers, let 
V(A ; q . . . .  , tn) denote the operator 

[ . . .  

Definition. We shall say that the Dyson series on the right-hand side 
of (3.1) is L]-convergent if 

k ~ d t l ' "  "d tn l [V(A; t l  . . . . .  tn)[l< ~ (4.1) 
n = 0  dO > ~ t l > . . .  > tn>- -oO 

We postpone the proof of the LLconvergence of the Dyson series to 
Section 6. Here we state some of its consequences. 

T h e o r e m  4.1. Let the strongly mixing W*-dynamical system in 
thermal equilibrium { ~ ' ,  oa, or} be perturbed to { ~ ' ,  ~0 v, a v}. Suppose that 
the Dyson series involved is L Lconvergent for all elements of some subset 
d o f ~ / .  

Then for all A ~ ~ and all M ~ ~ / :  

lim (oo v _ ~)( c~,( M )c~tV ( A ) ) = 0 (4.2) 

ProoL Using (3.1) we may write 

( , o  - 

= a ~ v ( a t ( M a  , o a, V(A)))  - a~(Ma , o atV(A)) 

oo 

= • i"( d t l . . .d t .  
n = 0  d 0 > q > - - .  > t n > - - o o  

x O(t + t,)(,o v ( ,~ , (MV(A; t ,  . . . . .  t,))) 

- o a ( M V ( A ; t l , . . . ,  t~))) (4.3) 

Here, 0 is Heaviside's function. 
By the mixing property of (~,',~0,e~}, the integrand in (4.3) tends to 

zero for all n ~ N and all t 1 . . . . .  t n ~ R. Its absolute value is bounded by 
the function 2LIMII  �9 II V ( A ; t ~  . . . . .  t . ) l l ,  which is in L 1 by assumption. The 
statement (4.2) now follows by the dominated convergence theorem, m 
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Corollary 4.2. Under the same assumptions, for all A E d ,  

lim ~oo a,V(A) = ~o V(A) (4.4) 
t - - > ~  

Proof. Put M =  l in (4.2). [] 
The content of Corollary 4.2, combined with a consideration of the 

weak-coupling limit ~/$0 for both sides of (4.4), was the kind of return to 
equilibrium, aimed at by Benguria and Kac. (l) For the special choices 

= ~ ,  V =  exp(aQ0~'~o), and A = exp(bQ0P''), the Dyson series for 
limt__,~(a[V(A)) and the power series in c, obtainable for instance from 
(3.5), for ~'V(A) were compared in the limit ~$0. A few terms were found 
to be equal. 

As a matter of fact, no perturbation of the dynamics was considered in 
Ref. 1, neither was the Dyson series explicitly mentioned. Instead, the 
anharmonic Langevin equation was rewritten as an integral equation for 
the position operator, X ~v say, in terms of Q0 B'n. A recursive procedure was 
devised for the computation of the coefficients of the power series in e of 
o~(exp(bX'V)). One may check that this procedure yields precisely the 
Dyson series for limt__,~0 o air(A). 

In Ref. 1 the authors said they could not "escape the feeling that 
(their) calculations merely constitute an elaborate verification of the inner 
consistency of quantum mechanics." It turns out that this feeling was not 
deceptive. Indeed, Theorem 2 of Ref. 5 asserts that, if one does not bother 
about convergence of limits, the termwise identity of the two power series 
compared in Ref. 1 is a consequence of the KMS condition, together with 
the strong mixing property of {~/ ,  o~, a}. These two requirements do not 
imply, however, that {~,/, o~ v, a v} is mixing or indeed that (4.4) is valid, as 
is shown by a counterexample, given in Ref. 10. 

Only if each of the coefficients and the entire series converge can it be 
concluded that their sums are equal. 

5. ISOMORPHISM OF THE DYNAMICAL SYSTEMS 

A much stronger statement can be proved from the Ll-convergence of 
the Dyson series: the W*-dynamical systems {.~/,~o,c~) and {~Zg,~ov, a v} 
are actually isomorphic. As a consequence, {1", ~0 v, ~ v) is also mixing. 

The proof which will be given here is based on the idea of Robinson (8) 
to consider the limit 

lim c~_Vt o c~I(A ) = :  y0~(A) (5.1) 
t~>oO 
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for all A in a properly chosen *-subalgebra .~/ of ~#. Under fairly mild 
conditions--in fact only the n = 1 term in (4.1) is needed--this limit exists 
and defines a *-morphism y0 v: d ~ ~ '  with the intertwining property 

~,~o ,~, = ,~,~o ~,0 ~ (5 .2 )  

Moreover, by the mixing property, 70 V transforms o~ v to c0: 

o~ V o 7V(A) = lim o~ V o a,(A) = ~(A) (5.3) 
t---~ oo 

What we have to do is to extend 70 v to all of ~,', and to prove that it 
becomes surjective. In order to do the former, we have to go down to the 
Hilbert space level. For the latter we need the "inverse Moller" limit 

lim ~x_ t o a,V(A)=: ,70V(A) (5.4) 
t - ~  oo 

Any W*-dynamical system {d / ,  ~0, a} brings along with i t - -or  indeed 
has been constructed f rom--what  we shall call a Hilbert space dynamical 
system {;~f ' ,~ ' ,~,  U}. Here, ~ is the GNS space associated with ~ '  and 
o~, with cyclic vector ~. ~ "  is the concrete yon Neumann algebra of 
operators on ~ ,  and U = { U t } t ~ n is the group of unitaries on ;~U, defined 
by 

UtM~ = a,(M)~ (M ~ J[)  

Theorem 5.1. Let the strongly mixing W*-dynamical system { ~ ' ,  o~, 
a} be perturbed to (Jt',o~v,a v} and let ( ;~U,~/ , ( ,  U} and { H , J { , (  v, 
U V} be the associated Hilbert space dynamical systems. Suppose that for 
all A in some weak *-dense, a-invariant, unital sub-*-algebra ~aS of ~ / t h e  
following holds: 

f~ kl[ ,(v),A31ld,< (5.5) 
Then there is an isometry f~v : H ~ ~,~ with the properties 

a ~ o  u, = U f o  a V (5.6) 

and 

av~  = ~ v (5.7) 

Proof. From (3.3) it follows that for all 0 < s < t 

tlo~v, o a , (A )  - a_V,o a , (A) l l  < ( ' l [ [ a _ , ( g ) , A ] l l d u  
J s  
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and it follows from (5.5) that t ~--~e~_vt o at(A ) is Cauchy in the operator 
norm for t -~ m. Therefore 70 v exists as a *-morphism ~ ~ ~ ' .  Now define 

~v : ~__>.~,~v : A~_>TV(A)~V 

By (5.3) we have for all A ~ ~ ,  

]l~VA~U 2= uyv(A)~V]l 2 = (~v, yv(A)*yoV(A)~ v) = ~oVo yV(A*A) 

= ~o(A*A)  = ( ~ , A * A ~ )  = ]IA~]]  2 

As d is weak*-dense, hence strongly dense in ~ ' ,  the closure of . ~  is H .  
Therefore f ~  extends by continuity to an isometry f~v. H ~ jf~. Clearly, 
f~v~ = 70v(~)~ v = ~ v. Furthermore, for all A ~ d we have, by (5.2): 

Olt V a ~ A ~  = a ~ , ( A ) ~  = v0~o ~,(A)~ ~ o V0~(A)~ ~ 

= U , % ~ ( A ) ~  = u/avA~ 
and (5.6) follows. [] 

At this point the L1-convergence of the Dyson series comes in to prove 
that f~v is unitary. 

T h e o r e m  5.2. Let {J{,~0, c~} be a strongly mixing W*-dynamical 
system in thermal equilibrium, and (i/ ,r e~ v} its perturbation by V 
= V* E ~ ' .  Suppose that the Dyson series involved is L1-convergent for all 
elements of a weak *-dense c~-invariant unital *-subalgebra d of ./~/. 

Then there exists a *-automorphism 7 v of ~Z/with the properties 

and 

v o r v = ,o ( 5 . 8 )  

7 v ~ 1 7 6  (5.9) 

Proof. From the LLconvergence (4.1) of (3.1) it follows that for all 
A ~ ~e" the limit (5.4) exists in the norm topology. By Corollary 4.2 we have 

~oo ,70V(A) = lim ~0o %V(A) = ~o V(A) 
t -~  ~ 

Therefore the map 

~v : , ~  v___> ~ , ~  : A~V~_~V(A)~ 

extends to an isometry ~v on ~f~ by the same reasoning which showed the 
existence of f~v On the other hand, (5.5) is seen to follow from (4.1) by 
looking at the n = 1 term only. So ~v exists, having the properties (5.6) 
and (5.7) 
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Now, by Theorem 4.1 we have for all A and B in d ,  

(B*~,~VA~ v) = ((,B~V(A)() = ~(B~V(A)) = lim ~0(Ba , o aT(A)) 

= lim w(at(B )atV(A)) = lim ~0 v(at(B )atV(A)) 
t---) oo t - - )  oo 

= lira ~0v(avt o a,(B)A) -- ~v(Tv(B)A ) 
t - ~  oo 

= (4 v, yf(B )A~ v) = (7V(B,)~ V,A ~ v) = (aVB,~,A~ v) 

It follows that ~ v =  (f~v),. Being both isometric, av  and ~v must be 
unitary and each other's inverse. 

Now, define for all M E ~ ' ,  

vV(M) := a~M(aV) -I  (5.10) 

Then, by (5.6) and (5.7) we have (5.8) and (5.9), and clearly ,f v has the 
properties of a *-morphism. It remains to prove that y v ( ~ , )  = ~ / .  

Note that for all A, B ~ sO', 

aVAB~ = 7V(AB ) ~ v =  7oV(A)yoV(B ) ~ v =  v0~(A)aVS~ 

It follows that ~VA = 7oV(A)~2 v, hence 7V(A)= ToY(A), for all A ~ sa/. 
Similarly (7 v)- l is shown to extend ~7o v. On the other hand, 7 v is strongly 
continuous since it is spatial Therefore 

V v ( ~ ' )  = V v(~< ,,) c V v (~ ) , ,  = vov(~),, c ~ "  = .4 '  

By the same argument also (y v)- i ( .4/)  C ~ / ,  and the statement follows. 
[] 

6. PROOF OF THE LI -CONVERGENCE 

In this section it will be shown that the results obtained in the previous 
sections indeed apply to the system {~ '~ ,  ~B, a}, described in Section 2, 
when it is perturbed by the operator V = w(QoB'n). A requirement for w will 
be formulated. 

A good choice for the sub-*-algebra of ~/t~ on which to prove the 
L~-convergence, is the *-algebra d e ,  n , finitely generated by the operators 

{ w(Xr~q~) I X e a, t e ~} 

The reason the proof works, is that the commutator of two such operators 
decays rapidly for increasing time separation: 

Ill W(XlT~,qn), W(X2Tt2qn) ]][ < 2]sin�89 T,2-t,q~)l 

where t ~ Io(q~, Ttq~) I decays exponentially: 
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L e m m a  6.1. For all r / >  0 there are positive constants a and b, such 
that for all t ~ R, 

[o(qn, Ttq~) I 4 a .  e -bltl (6.1) 

These constants necessarily satisfy 

a > b (6.2) 

For example, in the underdamped case, characterized by ~ < 2, one 
may choose a = (1 - �88 and b = i t /  

2 " 

Proof. We omit indices 7. Let p = - q', as in (2.4). Then, for t > 0, 

= - -  + + 1 p ( s ) q ( s -  0ds= 0 dt~ +~27 +1 dt~ 
because q " - r / q ' +  q = 0 on ( -  o e,0) [cf. (1.4)]. So t~--~o(q, Ttq ) satisfies 
the damped oscillator equation on (0, oe), and since o(q, T tq ) = - o ( q ,  
Ttq ), (6.1) follows. Now, 

;: = _ _ _  + a(q, Ttq)dt  o(  q, Ttq)  dt  ~ ~ - ~  

[d  1 = "( q 'p)+~'(  q'q)=l = 2 ;  o ( q ,  r,q) + ~ , (q ,  r,q) ,=0 

On the other hand, 

fo~lO(q, Trq) ld t<foo~176 

Therefore, 1 < a / b ,  i.e., a > b. �9 
The following definition will help formulate our requirement for the 

perturbation w of the potential. 

Definilion. Let J /  be the Banach space of all complex measures u 
on [~ of finite total variation and satisfying 

u ( - S )  = , ( S )  

for all Borel sets S c JR. Let the norm l[v[[,,~J be the total variation of v. The 
total variation measure will be denoted by p+. In particular, v+(R) 
= irv[t~,. Let ~ be the linear space of real functions of the form 

; ~~ ixh, (d2t), p E J K  f ( x )  = e 
OQ 

J ~  is a Banach space in the norm Ilfl[~k := [[vll~. 
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Theorem 6.2. Let w ~ J~" be such that also w' and w" are in J ~ .  
Suppose that w satisfies the inequality 

211wllj~ +allw"llJ; < b (6.3) 

where a, b > 0 are given by Lemma 6.1. 
Then the Dyson series, associated with the perturbation operator 

w(Q0~'~), is LLconvergent for all A ~ dr 

We shall prove this theorem in several steps. 
Let R(n), with n ~ N, denote the set of all ordered sequences r = 

(r l, r 2 . . . .  , re} of integer numbers, satisfying 

0 <  rl < r 2 <  . . .  < r e < n  

Here, p is simply the length of r. Let R(n) also contain the empty sequence. 

I .emma 6.3. For all f0 . . . .  , f~ ~ Y ~ ,  

II[W(f,),[ "'" [W(f l ) ,W(fo)] ' ' "  ]][I 

< 2"" ~, 1�89 1�89 X " ' '  • 1�89 
reR(~) 

yields 

where 

Proof. 

Now, let o A 

and 

Repeated use of the equality 

[ W(f),  W(g)l = 2isin(�89 g))W(f+ g) 

I h [ W ( f ~ ) , [ ' ' "  [W(f , ) ,W(fo)] ' ' "  1 ] 1 [ = 2 ~ $ 1 " ' ' S .  

s t  = I s i n ( � 8 9  f t _ ,  + ' + f0))l  

= �89 ]o(fy, fk)] for short. The numbers S t satisfy two bounds: 

S t < 1 (6.4) 

k - I  

Sk ~< ~ ~jt (6.5) 
j = 0  

We claim that these bounds imply that 

S I . . . S , <  ~, O0,rOr,,r "' 'Orp,, (6.6) 
reR(n) 

We proceed by induction. In the first place, (6.6) is valid for n = 1 by (6.5): 
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S l ~< a01. N o w  suppose that (6.6) holds for all n up to some integer m. 
Then, by (6.5) and (6.4), respectively, 

S l ' "  " a m a i n +  1 

S I  . . . S m ( o O , m +  I dr- . . .  -.~ a m , r e + l )  

<~ aO,m+ ! "k- S i a l , m +  1 "F S I S 2 O 2 , m +  1 "F �9 �9 �9 

-[- S i S  2 �9 . , S m o m , m +  I 

Now, we apply the induct ion hypothesis (6.6) for n = 1 . . . . .  m, and 
conclude that 

", O0r 
n = l  r ~ R ( n )  

= E aO,r,Or,,r2 " " " are,m+ 1 
r ~ R ( m + l )  

We conclude that  (6.6) also holds for n = m + 1, and the statement follows 
by induct ion on m. �9 

Lemma 6.4. Let a and b be given by Lemma 6.1. Then for all 

n , m  ~ ~ and  all X1 . . . . .  X, E ~, t I . . . . .  t, E ~ and  x!, . . . , K m ~ ~, 
s~ . . . . .  s,, ~ ~ we have 

n--I 

<(k~=llKk,e-bsk)alXnlebt~l~=l(2+aX~) (6.7) 

Proof. Let us omit indices 7, and denote Ttq by qt- An  application of 
L e m m a  6.3 with f0 = ~]~'=l~kqs, and ft=Xlqt,, ( / =  1 . . . . .  n), gives the 
following upper  bound  for the left-hand side (1.h.s.) of (6.7): 

(1.h.s.) < 2 ~ ~ �89 a ,,,qs~ ,Xr,q,., 
r @ R ( n )  1 

x �89 'Xr2q,,2)l X ' "  X �89 ,Xnq,o)l 

This can again be estimated by the use of the bounds  on a(q~, qt), given by 

]a(q~,qt)[ ~< ae-@-tl <~ ae§ 0 
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as follows: 

( l .h . s . )<2  n ~ ( � 8 9  '~:kXr,[exp I b ( t r , - s k )  l} 
r E R ( n )  k = t  

X �89 tr,)] X . . .  • �89 lexp[b( t  ~ - tg) ] 

( ) 2o ~ I~kLe-b" • �89 • X (~aXr,t'" (�89 
k = l  r @ R ( n )  

Now, the sum over R(n)  is in fact a sum over all subsets of {1 . . . . .  n - 1}, 
and therefore 

n - - 1  
s ( 1 a~k2] . . = i aX2"~ 

\ ~  rl ] " (�89 ,__II1 (1 + 7  , )  
r E R ( n )  

By distributing the 2 n over the factors, we obtain (6.7). [] 

Proof of Theorem 6.2. Let v E S / be such that fexp( iXx)v(dX)  
= w(x),  and let V = w(Q0). Then 

a , ( V )  = w ( Q , )  = f~~  W(Xqt)u(dX ) 
oo 

It suffices to prove the Ll-convergence (4.1) of the Dyson series for all A of 
the form 

(2) A = W ~kqs~ (6.8) 
1 

Applying Lemma 6.4, we find that for all t ~ , . . . ,  t,, ~ ~ the following 
holds: 

I lV(A; t ,  . . . . .  tn)ll : - I I [ % ( V ) , [ ' ' ' [ % ( V ) , A ] ' ' ' ] ] I t  

.<s (dXo)... f~  + (d~,) 

)s ~< 2 I~kl e-b'~ (a IX~lv § (dX~)) 
k = l  

n - 1  

• t_IiI ( s  + aX~)v + (dX,))e bt~ 

= oAaLIw'lls<(RIIwll.~;. +atlw"ll.;<)n-le b" 
m e Here, c A = ~k=llXkl xp(--bSk) is a positive constant, determined by the 

choice of A in (6.8). 
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Now note that 

fo >~ t l  >~ . . .  ) t n 

�9 . .  d tnebt .= f ?  d l l e b t l (  tl dt2eb(t2-tO . . . 

) (~ tn- ld tneb( ' . - - l . - I ) - -  2n 
J - - O 9  

Therefore 
o 9  

L;0 - -  >~ t l  ) . , .  >~ t n 

�9 . 'd t ,  llV(A;q . . . .  , t~)ll 

< IIAII + cAab-lllw'll~7 ~ (2[Iwll~J~ +allw'll.p)n-'/b "-~ 
n = l  

This series converges provided w satisfies the inequality (6.3). �9 

Remark. If w satisfies (6.3), then v is strictly convex. Indeed, from 
(6.3) it follows by (6.2) that Ilw"ll~ < 1. But then, 

Iw"(x)l = ~(i~t)2eiXXt'(d)t) NK~X2P + (d~k)=/Iw"ll~J~ < 1, 

and 

v " ( x )  = 1 + w " ( x )  > o 

7. THE SOLUTION OF THE ANHARMONIC LANGEVIN EQUATION 

In this section we shall prove our still pending claim that perturbing 
the dynamics helps solving the quantum l,angevin equation with perturbed 
potential. 

Let us omit all indices/3 and ~7 in this section, and denote Q0 ~'~ simply 
by Q, dr by ~,/, etc. If ~- is a *-automorphism of JZ, we define "c(E(f)) 
( f  ~ J ) ,  in the obvious way: since E(f) is the infinitesimal generator of 
the group {W(2tf)}x~R, let "r(E(f)) be the infinitesimal generator of 
{ T(W(•f)) )x ~a. 

We shall show that the family {X t}, given by 

X t = at(X ) with X = (yw(Q))- ' (Q)  (7.1) 

is a solution of the Langevin equation (1.1) with potential v(x)= �89 
w(x), provided that w satisfies the inequality (6.3). The main line of this 
proof is the following simple computation: Taking the limit t ~ ~ in (3.3) 
one obtains for all A E ~ ,  

v V ( A ) -  A = - i  foogaV_t( I V, at(A) ])dt (7.2) 
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Then, putting A = Q and V = w(Q), and using the fact that [w(Q), Qr] 
= io(q, Ttq)w' (Q), one finds that 

7 ~( Q)(Q) - Q =logo(q, T~q)aW_(tQ)(w'(Q)) dt 

Now, let (y"( Q))-~ act on both sides to yield 

Q - X =  o(q, rtq)w'(X ,)dt 

This is the form of the Langevin equation, taken as a starting point for the 
computations in Ref. 1. 

Lemma 7.1. If w satisfies the inequality (6.3), then Q and ~,~(Q)(Q) 
have the same domain. For each 4 in this common domain the following 
holds: 

yw( Q)( o ) 4 -  Q4= fo~O(q, Ttq)aW_!~Q)(w'( Q ))+dt (7.3) 

Proof. For 4 ~ ~;gr consider the difference 

ix ix j4 (7.4) 

By (7.2) this is equal to 

f 0 ~ ( -  i ) ( i x ) - l , ~ e ) ( [  w( O ), W(Xr, q) l)4dt (7.5) 

Now, let w = ~ with v ~ JU. Then 

[w (Q ) ,  W(XT, q)3 

= f f~  [ w(X'q), w(Xr~q)lp (dx') 

= f ~  ( exp [ - i~h ' o (q ,T ,q ) ]  - 1} W(XT, q)W(X'q)v (dX') (7.6) 

The integrand in (7.5) is therefore bounded in norm by 

f f ~  IX' ,,(q, ~q)lv + (dX') = [o(q, r,q)L . IIw'll ~ 

which is clearly independent of X and integrable as a function of t. By (7.6), 
as X tends to zero, the integrand in (7.5) tends to 

.!, a, o(q, w(x, q). (dx,))4 = o(q, r,q)  Q,(w'( o ))4 

It follows by the dominated convergence theorem that the limit of (7.5) as 
~ 0, is equal to the right-hand side of (7.3). Since the latter is finite for all 

4, the limit as X ~ 0 of the first term of (7.4) exists for the same 4 as the 
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limit of the second does. This means that ~,w( Q)(Q) and Q have the same 
domain, and (7.3) holds for 4 in this domain. B 

Let .~ denote the linear span of the vectors W(f)~ with f E J .  
We note that the inverse of the map L : J ~ . f  : f~-~f" - ~ f '  + f is 

given by 

(L-ig)(t) = (~ T,_,q)g(s) ds = (27) - ' / 2 [  "~176 q(t - s)g(s) ds 
d t  J - - o o  

Corollary 7.2. (Langevin equation). If w satisfies (6.3), then for all 
4 ~ - @  and a l l f ~ J ,  

f _ ~  ( [ / " ( t )  - r / f ' ( t ) ] ~4  + f ( t ) [  ~ 4  + w'(X, )4]) d,= (2~t)'/2E(f)~ 

Proof. By (5.10), 7w(Q)(Q) is of the form f~Q~-l ,  where f~ is 
unitary. In the proof of Lemma 7.1 above it was shown that Dom(~2Q ~2-l) 
= Dom(Q).  Hence ~2Dom(Q)= Dora(Q), and for all 4 ~ Dora(Q) we 
have 

Q4 - x4  = o(q, T,q)w'(X_,)4ds 

Since 2 c Dora(Q) and ~ is invariant for time translation, we have for 
all ~ ~ 2 ,  

f~oo~ ' 
Q,4 - x ,4 = Tt-sq)w'( X, )4 ds (7.7) 

Now, because of the inequality 

]1Q:W(f)~lt 2 < Ifql[Z(1 + 4[if r[ 2) 

t ~ ]I Q,4H is bounded for all 4 ~ ~ ,  and the integral in (7.7) is uniformly 
bounded in t and in 4. Hence we may integrate (7.7) with a function 
g ~ . / :  

f: K 2 f;~ g(t)X,4dt+ g(t) o(q, T, ,q)w'(X~)~pdsdt= g(t)Qt~dt 
o o  o o  o o  

Putting g = Lf we obtain 

f'_2(Lf)(t)X,4 at+ f -2 f(s)w'(X, )4 a,= f 2(rf)(OQ,  dt 
Finally, since ( Q< = E(T,q)) solves the harmonic Langevin equation: 

~ ( L f ) ( t )  Qr dt= E(Lf* q)4 = (2~)l/2E(f)4 

the result follows, B 
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Corollary 7.3. (Return to equilibrium). If w satisfies (6.3), the solu- 
tion (7.1) of the Langevin equation satisfies, for all unit vectors ~ ~ ; ~ ,  

lim (~, exp(iXX, )~) = o0o (7 w( Q))- ~(W(Xq)) = oa ~(O)(W(Xq)) (7.8) 
t - - > ~  

Proof. This is a consequence of the mixing property for { J t , ~ , ~ } ,  
and Theorem 5.2. �9 

8. THE DIFFERENCE BETWEEN THE LIMIT STATE AND 
THE GIBBS STATE 

In their paper, (1) Kac and Benguria considered not only the limit 
t ~ m, but the limit % 0  as well. Both limits taken, the probability distribu- 
tion/zB,0, w, defined in (1.8) was to emerge. 

Here, it turns out, nothing can be said, strictly speaking, about the 
latter limit. Indeed, for all nontrivial w there exists a positive value of ~, 
below which the inequality (6.3) breaks down. We have to content ourselves 
with a proof that, for small values of 7, the limit measure /xr w, given 
by (7.8), 

is close to the probability distribution /%o,w of the quantum harmonic 
oscillator. 

Let the function ~: [0 ,  o o ) o  N be defined by 

�9 (/8) = ~ 2rrm/fl2 

m = l  [(2vrn//~) 2 + 1] 2 

For large fi, q~(B) behaves like 1/4~r, for small fi like ~'(3)~ 2/(2q7)3, where ~" 
is Riemann's zeta function. 

Theorem 8.1. Let/3 and ~ be positive numbers and let w ~ J U  be 
such that w' and w" are in ~/~ as well. 

Then, for all X ~ R, 

I ~,~,~ (X) - ~,0,~ (X)l 
tr [ exp( - Bh)] 

~< ~ ( f l )  trC~L-k-T~r--_ZVZ,,.~-u.,q ~ ( x2 + 2fl l lw"ll~) er i (8.1) 
I~APL Pk"T~}J~ 

Proof. Let F/~,~ be the two-point function t ~-~ (~ ,  Qo~'nQf'~r of the 
damped harmonic quantum oscillator. Its analytic extension to the strip 
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A ( =  {z ~ C [ O  < Imz  < fl} is given by 

f ?  k 2~1 eikZ dk 
F~,,(z) = o~ 1 - e x p ( - f l k )  (k 2 _ 1) 2 + ~2k2 2--~ 

(8.2) 

Using the canonical commutat ion relations one derives that, for all 2~0, 
. . . .  h n E R and all t l . . . . .  t n ~ ~, 

o~ B (W(hoq,) W(X, T~,q,)... W(h, T,o%)) 

= e x p [ -  j,k=O ~ ~J~kO(j-- k)FB'"(tj-- tk) 1 (8.3) 

Here, we mean by to: 0, and by O(j-  k): 0 i f j  < k, 1 i f j  > k and 1/2  if 
j = k. The right-hand side of (8.3) extends by (8.2) to a bounded and 
continuous function on Aft [cf. (3.4)], analytic on the interior of this region, 
and whose restriction to purely imaginary arguments {is�91 . . . . .  isn} is 
given by 

exp( -- �89 j,~k=O~J~k FBm ( i[sj -- Sk[) ) 

According to (3.5), this yields the following expression for the perturbed 
equilibrium distribution: 

~p,~,w (X) = &~,w (X)/&~,w (0) 

where 

(2,o) = < .  . . . < .  < .  I s , . . .  d s , @ ,  ( . . . ( d ; , . )  

( 1 ~ hjhkF~(ilsj Ski) ) (8.4) • exp - ~- , -- 
j,k=O 

On the other hand,  let FB, 0 be the two-point function of the simple 
harmonic oscillator, defined in terms of the latter's position operator x as 

F/~,o ( t ) = tr(e - Bhxe ithxe -~th )/tr(e -/~h ) 

= (�89189 f i )cos t  + �89 

Its analytic extension is given by 

Ft~,o(Z ) = �89 - e-B)-le i~ -- (1 -- eB)-'e -`~] 

Define the measure O~,O,w on N by 

t3~,0, w (X) = tr(e-B(h +~)eiX~ ) / t r ( e  -r ) (8.5) 

Then one checks, using ordinary perturbation theory, that (8.4) is valid for 
= 0 as well. 



260 Maassen 

The following lemma gives us a grip on the right-hand side of (8.4). 

Lemma 8.2. The functions {s,u}~f~,~(ils-ul) and {s,u}~-> 
FB,o(i ls-  u [ ) -  F~,n ( i l s -  u[) are positive definite kernels on [0,/3] • 
[0,/31. Moreover, for all s E [0,/31, 

[fl~,o(is ) - El3,, (is)l < 2rlq~(/3 ) (8.6) 

Proo f  o f  the  l emma.  A computation of the Fourier coefficients of 
s ~ F~,.(is) on [0, fl] results in the uniformly convergent series expansion 

1 k e2~rims/B 
Fl~'n(is) = f l  m = - ~  (2r rm/ f i )  2 + n(2vrlml/fl) + 1 

Since the Fourier coefficients are positive, {s, u} ~+ F~,n(i[s - u[) is positive 
definite. And, because the difference 

1 1 

(2 r rm/ f l )  2 + 1 ( 2 ~ m / f l )  2 + ~(2~rlm[/ f l )  + 1 

2~rlml//3 (8.7) 
= 7  [(29rm//3)2 + 1 ] [(2~rm//3)2 + ~l(2~rlrnl/fl ) + 1  ] 

is positive, the difference of corresponding kernels is positive definite as 
well. Finally, the right-hand side of (8.7) is bounded by 

2~r[m[/ /3 
r I �9 

+ 1] 2 

and (8.6) follows. �9 

Proo f  o f  T h e o r e m  8.1 (con t inued) .  Now, let us call the argument 
of the exp function in (8.4): - f07) .  Then Lemma 8.2 asserts that 0 < f(~) 
< f(0) for all 7/ > 0. It follows that l exp [ - f ( r l ) ] -  exp[- f (0) ] l  < f ( 0 ) -  

f(~). Therefore (8.4) implies that for all )t o ~ R, 

I& ,w (x0) - &0,w (Xo)l 
OO 

_ <~s l<~ - - .  < s n < ~  f l  IR,, 

• �89 k XjNk[gP,o(ilsj - s k i ) -  g ~ , , ( i l s j -  skt)l (8.8) 
j,k=O 

Subsequently, we interchange the sum over j  and k with the X integrals, and 
perform the latter. If j :/= k, the integral over Xj)t~ yields zero, because r + is 
a symmetric measure. I f j  = k = 0, it yields X 2 �9 iiwllS';, and i f j  = k ~ 0, it 
yields . . . . .  1 IIw II~llwll.~ �9 The s-integral then becomes simple to perform, 
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because only zero remains as an argument for the functions Fp, 0 and F/~,, ; it 
gives a factor B"/n?. So the right-hand side of (8.8) is equal to 

B n 
�89 [ FB,0(0 ) FB, n (0) ] ~ ~ (X~] I . . . . .  w "~'  - w l l ~  +nllw II.~ll II~ ) 

n=0  

= �89 [ F~,o(0) - F~,~,(0)](Xo ~ + / ~  IIw"!l~)e~H*" 

which is bounded by ~d~( fl)(X~ + fl II w" [} ~ ) e  r ;. 
To derive from the above an upper bound for the difference of the/~'s 

instead of the O's, we argue as follows: If x, y ~ C and x o, Yo > 0 are such 
that Ixl < Xo and lyl < yo, then 

x / l =  _2_1 [Xyo_yXol= X~o IX(yo-Xo)-xo(y-x), 
Xo Yo XoYo 

<< __1 (lYo - Xol + IY - xl) 
Yo 

Applying this inequality, we obtain 

The statement (8.1) follows by (8.5). [] 

~k2-t-2fl  W" " 

~e,o,w (o) 
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